

Welcome to pydnameth’s documentation!

Contents:

	pydnameth
	Documentation

	Features

	Copyrights

	Installation
	Stable release

	From sources

	Usage
	Import

	Info

	Config

	Released Experiments

	Usage Examples

	Contributing
	Types of Contributions

	Get Started!

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.2.4 (2019-11-06)

	0.1.0 (2019-01-24)

Indices and tables

	Index

	Module Index

	Search Page

 [image: PyPi page]
 [https://pypi.python.org/pypi/pydnameth][image: Travis build status]
 [https://travis-ci.org/AaronBlare/pydnameth][image: Appveyor build status]
 [https://ci.appveyor.com/project/AaronBlare/pydnameth][image: Coverage status]
 [https://codecov.io/gh/AaronBlare/pydnameth][image: LGTM code quality]
 [https://lgtm.com/projects/g/AaronBlare/pydnameth/context:python][image: Dependabot status]
 [https://dependabot.com][image: Documentation Status]
 [https://pydnameth.readthedocs.io/en/latest/?badge=latest][image: Project Chat]
 [https://gitter.im/pydnameth/community]
pydnameth

DNA Methylation Analysis Package

This package provides some pipelines for analysis mythylation data.
The main goal is to find correlations between methylation on the one hand,
and age, sex, disease, and other characteristics of subjects on the other.

Examples of free-access methylation datasets:

	GSE40279 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40279]

	GSE87571 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87571]

Documentation

Available at https://pydnameth.readthedocs.io.

Features

	Defining best age-predictors CpGs for different subjects subsets.

	Defining best observable-specic CpGs (sex-specific, disease-specific) which are differently methylated with age.

	Building Epigenetic Clock.

	Plotting subjects distribution depending on the observable (sex, disease).

	Plotting methylation profiles for CpGs.

Copyrights

Free software: MIT license

Installation

Stable release

To install pydnameth, run this command in your terminal:

$ pip install -U pydnameth

This is the preferred method to install pydnameth, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

If you want to save figures locally as .pdf and .png run the command:

$ conda install -c plotly plotly-orca psutil

From sources

The sources for pydnameth can be downloaded from the GitHub repo [https://github.com/AaronBlare/pydnameth].

You can either clone the public repository:

$ git clone git://github.com/AaronBlare/pydnameth

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Import

To use pydnameth in a project:

import pydnameth as pdm

Info

As a rule, 4 files are provided in each methylation dataset:

	betas.txt - contains methylation data itself.
Rows correspond to individual CpGs, and columns correspond to subjects.

	annotations.txt - contains information about CpGs.
Rows correspond to individual CpGs, and columns correspond to CpG’s characteristics (gene, bop, coordinate, etc.).

	observables.txt - contains information about subjects.
Rows correspond to subjects, and columns correspond to subject’s observables (age, gender, disease, etc.).

	cells.txt - contains information about cell types population.
For example, if DNA methylation profiles taken from human whole blood,
then for each patient a different proportion of blood cells types is possible.
Rows in file correspond to subjects, and columns correspond different cell types proportions.

The first line in each file is usually a header. File names and file extensions may differ, but content is the same.
Currently supported only .txt extension.

These files must be located in the same directory. After running experiments, new directories with results
and cached data files with .pkl and .npz extensions will appear in this directory.

For all experiments provided by pydnameth you need to specify config information.

Config

For each experiment you need to create instances:

	pdm.Data

	pdm.Annotations

	pdm.Attributes

Data

pdm.Data contains information about dataset.
For creating instance of pdm.Data you need to specify next fields:

name

Name of the file without extension (currently supported only .txt extension),
which contains methylation data.

Example:

name = 'betas'

path

Path to directory, which contains base directory.

Example:

path = 'C:/Data'

base

Name of the directory, where the necessary files are located and where the files with the results will be saved.

Example:

base = 'GSE87571'

Example

Example of creating pdm.Data instance:

 data = pdm.Data(
 name='betas',
 path='C:/Data',
 base='GSE40279'
)

Annotations

pdm.Annotations allows you to define a subset of CpGs that will be considered in the experiment.
For creating instance of pdm.Annotations you need to specify next fields:

name

Name of the file without extension (currently supported only .txt extension),
which contains information about CpGs.

Example:

name = 'annotations'

exclude

Name of the file without extension (currently supported only .txt extension),
which contains CpGs to exclude.
If equals to 'none', then no excluded CpGs.

Example:

exclude = 'none'

cross_reactive

Should cross-reactive CpGs be considered in the experiment?
Currently supported options (string):

	'ex' - excluded all cross-reactive CpGs.

	'any' - all CpGs are considered.

Example:

cross_reactive = 'ex'

snp

Should SNP CpGs be considered in the experiment?
Currently supported options (string):

	'ex' - excluded all SNP CpGs.

	'any' - all CpGs are considered.

Example:

snp = 'ex'

chr

What chromosomes are considered in the experiment?
Currently supported options (string):

	'NS' - CpGs only on non-sex chromosomes are considered.

	'X' - CpGs only on X chromosome are considered.

	'Y' - CpGs only on Y chromosome are considered.

	'any' - all CpGs are considered.

Example:

chr = 'NS'

gene_region

Should we consider CpGs which are mapped on genes?
Currently supported options (string):

	'yes' - only CpGs which are mapped on genes are considered.

	'no' - only CpGs which are not mapped on genes are considered.

	'any' - all CpGs are considered.

Example:

gene_region = 'yes'

geo

CpGs on what geo-types should be considered?
Currently supported options (string):

	'shores' - only CpGs on shores are considered.

	'shores_s' - only CpGs on southern shores are considered.

	'shores_n' - only CpGs on northern shores are considered.

	'islands' - only CpGs on islands are considered.

	'islands_shores' - only CpGs on islands or shores are considered.

	'any' - all CpGs are considered.

Example:

gene_region = 'any'

probe_class

What CpGs probe class should be considered?
Currently supported options (string):

	'A' - class A CpGs are considered.

	'B' - class B CpGs are considered.

	'C' - class C CpGs are considered.

	'D' - class D CpGs are considered.

	'A_B' - class A and B CpGs are considered.

	'any' - all CpGs are considered.

Example:

probe_class = 'any'

Example

Example of creating pdm.Annotations instance:

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

Attributes

pdm.Attributes describes information about subjects.
For creating instance of pdm.Attributes you need to specify next fields:

target

Name of target observable column (string)

Example:

target = 'age'

observables

Specifies observables of subjects under consideration. Should be pdm.Observables instance.
For creating pdm.Observables instance you need to specify:

	name - name of the file without extension (currently supported only .txt extension),
which contains information about subjects.

Example:

name = 'observables'

	types - python dict with key - header of target observable and value - value of target observable.
Also values can be 'any' if you want to consider all existing values.

Example:

{'gender': 'F'}

cells

Specifies cell types population. Should be pdm.Cells instance.
For creating pdm.Cells instance you need to specify:

	name - name of the file without extension (currently supported only .txt extension),
contains information about cell types population.

Example:

name = 'cells'

	types - python list of cell types which should be considered in the experiment (string headers in file_name)
or string 'any' if you want to consider all cells types.

Example:

types = ['Monocytes', 'B', 'CD4T', 'NK', 'CD8T', 'Gran']

Example

Example of creating pdm.Attributes instance:

observables = pdm.Observables(
 name='observables',
 types={'gender': 'F'}
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

Released Experiments

The name of the functions provided by the pydnameth package are follow the next logic:

	First part is data type for the experiment. For example, betas, residuals or attributes.

	Second part answers the question: WHAT WE WANT TO DO?.
For example, table - table with data and characteristics processing,
plot - data plotting.

	Third part answers the question: HOW WE WANT TO DO?. Specifies the method for the experiment.
For example, linreg - linear regression method.

Currently released functions:

	
pydnameth.scripts.develop.betas.clock.betas_clock_special(data, annotations, attributes, file, method_params=None)

	Producing epigentic clock, using best CpGs which are provided in input file.

Epigentic clock represents as table:
Each row corresponds to clocks, which are built on all CpGs from the previous rows including the current row.
Columns:

	item: CpG id.

	aux: gene, on which CpG is mapped.

	R2: determination coefficient of linear regression between real and predicted target observable.
A statistical measure of how well the regression line approximates the data points.

	r: correlation coefficient of linear regression between real and predicted target observable.

	evs: explained variance regression score.

	mae: mean absolute error regression loss.

	rmse: root mean square error

Possible parameters of experiment:

	'type': type of clocks.

Possible options:

'all': iterative building of clocks starting from one element in the model,
ending with 'size' elements in the model.

'single ': building of clocks only with 'size' elements in the model.

'deep': iterative building of clocks starting from one element in the model,
ending with 'size' elements in the model, but choosing all possible combinations from 'size' elements.

	'part': the proportion of considered number of subject in the test set. From 0.0 to 1.0.

	'size': maximum number of exogenous variables in a model.

	'runs' number of bootstrap runs in model

	Parameters

	
	data – pdm.Data instance, which specifies information about dataset.

	annotations – pdm.Annotations instance, which specifies subset of CpGs.

	attributes – pdm.Attributes instance, which specifies information about subjects.

	method_params – parameters of experiment.

	
pydnameth.scripts.develop.betas.plot.betas_plot_scatter(data, annotations, attributes, observables_list, child_method=<Method.linreg: 'linreg'>, data_params=None, method_params=None)

	Plotting methylation level from observables as scatter for provided subjects subsets and provided CpG list.

Possible parameters of experiment:

	'x_range': can be 'auto' or list with two elements, which are borders of target axis.

	…

	Parameters

	
	data – pdm.Data instance, which specifies information about dataset.

	annotations – pdm.Annotations instance, which specifies subset of CpGs.

	attributes – pdm.Attributes instance, which specifies information about subjects.

	observables_list – list of subjects subsets. Each element in list is dict,
where key is observable name and value is possible values for this observable.

	method_params – parameters of experiment.

	
pydnameth.scripts.develop.betas.table.betas_table_aggregator_linreg(data, annotations, attributes, observables_list, data_params=None, method_params=None)

	Producing table with information about observable-specificity of target data type
and target observable for each CpG.

Columns:

	item: CpG id.

	aux: gene, on which CpG is mapped.

	area_intersection_rel: relative intersection area of polygons
which is equals area of polygon(s) intersection to area of polygons union ratio.

	slope_intersection_rel: relative intersection area of allowed regions for slopes of linear regression.

	max_abs_slope: maximal absolute slope between all provided subjects subsets

	…

	z_value: number of standard deviations by which data point is above the mean value.

	The considered data point is the difference between two linear regressions slopes.

	abs_z_value: absolute z_value

	p_value: probability of rejecting the null hypothesis that the difference in slopes is zero.

	…

For each subjects subset the next columns are added to the resulting table:

	R2_***: determination coefficient.
A statistical measure of how well the regression line approximates the data points.

	intercept_***: estimated value of the intercept of linear regression.

	slope_***: estimated value of the slope of linear regression.

	intercept_std_***: standard error of the estimate of the intercept of linear regression.

	slope_std_***: standard error of the estimate of the slope of linear regression.

	intercept_p_value_***: p-value for the intercept of linear regression.

	slope_p_pvalue_***: p-value for the slope of linear regression.

	…

Where *** is the name of subjects subset.

Possible parameters of experiment:

	None

	Parameters

	
	data – pdm.Data instance, which specifies information about dataset.

	annotations – pdm.Annotations instance, which specifies subset of CpGs.

	attributes – pdm.Attributes instance, which specifies information about subjects.

	observables_list – list of subjects subsets. Each element in list is dict,
where key is observable name and value is possible values for this observable.

	method_params – parameters of experiment.

	
pydnameth.scripts.develop.betas.table.betas_table_linreg(data, annotations, attributes, method_params=None)

	Producing table with information for linear regression between beta values
and methylation level for each CpG.

Each row corresponds to specific CpG.

Columns:

	item: CpG id.

	aux: gene, on which CpG is mapped.

	R2: determination coefficient. A statistical measure of how well the regression line approximates the data points.

	intercept: estimated value of the intercept of linear regression.

	slope: estimated value of the slope of linear regression.

	intercept_std: standard error of the estimate of the intercept of linear regression.

	slope_std: standard error of the estimate of the slope of linear regression.

	intercept_p_value: p-value for the intercept of linear regression.

	slope_p_pvalue: p-value for the slope of linear regression.

	…

Possible parameters of experiment:

	None

	Parameters

	
	data – pdm.Data instance, which specifies information about dataset.

	annotations – pdm.Annotations instance, which specifies subset of CpGs.

	attributes – pdm.Attributes instance, which specifies information about subjects.

	method_params – parameters of experiment.

	
pydnameth.scripts.develop.observables.plot.observables_plot_histogram(data, annotations, attributes, observables_list, method_params=None)

	Plotting histogram for target observable distribution for provided subjects subsets and provided CpG list.

Possible parameters of experiment:

	'bin_size': bin size for numeric target.

For categorical target is not considered.

	'opacity': opacity level.
From 0.0 to 1.0.

	'barmode': type of barmode.

Possible options:

'overlay' for overlaid histograms.

'stack' for stacked histograms.

	'x_range': can be 'auto' or list with two elements, which are borders of target axis.

	Parameters

	
	data – pdm.Data instance, which specifies information about dataset.

	annotations – pdm.Annotations instance, which specifies subset of CpGs.

	attributes – pdm.Attributes instance, which specifies information about subjects.

	cpg_list – List of CpGs for plotting

	observables_list – list of subjects subsets. Each element in list is dict,
where key is observable name and value is possible values for this observable.

	method_params – parameters of experiment.

Usage Examples

attributes_plot_observables_histogram

import pydnameth as pdm

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='GSE87571'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

observables = pdm.Observables(
 name='observables',
 types={}
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

observables_list = [
 {'gender': 'F'},
 {'gender': 'M'}
]

pdm.attributes_plot_observables_histogram(
 data=data,
 annotations=annotations,
 attributes=attributes,
 observables_list=observables_list,
 params={
 'bin_size': 1.0,
 'opacity': 0.75,
 'barmode': 'overlay'
 }
)

cpg_plot_methylation_scatter

import pydnameth as pdm

cpg_list = [
 'cg13982318',
 'cg11868595',
 'cg08900404'
]

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='GSE87571'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

observables = pdm.Observables(
 name='observables',
 types={}
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

observables_list = [
 {'gender': 'F'},
 {'gender': 'M'}
]

pdm.cpg_plot_methylation_scatter(
 data=data,
 annotations=annotations,
 attributes=attributes,
 observables_list=observables_list,
 cpg_list=cpg_list,
 params={
 'x_range': [10, 110]
 }
)

cpg_proc_clock_linreg

import pydnameth as pdm

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='GSE87571'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

obs_list = [
 {'gender': 'F'},
 {'gender': 'M'},
 {'gender': 'any'}
]

for obs in obs_list:

 observables = pdm.Observables(
 name='observables',
 types=obs
)

 attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

 pdm.cpg_proc_clock_linreg(
 data=data,
 annotations=annotations,
 attributes=attributes,
 params={
 'type': 'all',
 'part': 0.25,
 'size': 100,
 'runs': 100,
 }
)

cpg_proc_table_linreg

import pydnameth as pdm

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='GSE87571'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

obs_list = [
 {'gender': 'F'},
 {'gender': 'M'},
 {'gender': 'any'}
]

for obs in obs_list:

 observables = pdm.Observables(
 name='observables',
 types=obs
)

 attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

 pdm.cpg_proc_table_linreg(
 data=data,
 annotations=annotations,
 attributes=attributes
)

cpg_proc_table_variance_linreg

import pydnameth as pdm

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='GSE87571'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

obs_list = [
 {'gender': 'F'},
 {'gender': 'M'},
 {'gender': 'any'}
]

for obs in obs_list:

 observables = pdm.Observables(
 name='observables',
 types=obs
)

 attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

 pdm.cpg_proc_table_variance_linreg(
 data=data,
 annotations=annotations,
 attributes=attributes
)

cpg_proc_table_polygon

import pydnameth as pdm

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='GSE87571'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

observables = pdm.Observables(
 name='observables',
 types={}
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

observables_list = [
 {'gender': 'F'},
 {'gender': 'M'}
]

pdm.cpg_proc_table_polygon(
 data=data,
 annotations=annotations,
 attributes=attributes,
 observables_list=observables_list
)

cpg_proc_table_z_test_linreg

import pydnameth as pdm

data = pdm.Data(
 name='cpg_beta',
 path='C:/Data',
 base='EPIC'
)

annotations = pdm.Annotations(
 name='annotations',
 exclude='none',
 cross_reactive='ex',
 snp='ex',
 chr='NS',
 gene_region='yes',
 geo='any',
 probe_class='any'
)

observables = pdm.Observables(
 name='observables',
 types={}
)

cells = pdm.Cells(
 name='cells',
 types='any'
)

attributes = pdm.Attributes(
 target='age',
 observables=observables,
 cells=cells
)

observables_list = [
 {'gender': 'F'},
 {'gender': 'M'}
]

pdm.cpg_proc_table_z_test_linreg(
 data=data,
 annotations=annotations,
 attributes=attributes,
 observables_list=observables_list
)

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/AaronBlare/pydnameth/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pydnameth could always use more documentation, whether as part of the
official pydnameth docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/AaronBlare/pydnameth/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pydnameth for local development.

Environment

We use Anaconda [https://www.anaconda.com] Python distribution and PyCharm [https://www.jetbrains.com/pycharm/] IDE

You can use any other Python distributions and IDEs.

GitHub Init

	Fork the pydnameth repo on GitHub.

	Travis CI [https://travis-ci.org] and AppVeyor [https://www.appveyor.com] are continuous integration tools.
Login using your Github credentials.
It may take a few minutes for Travis CI and AppVeyor to load up a list of all your GitHub repos.
Turn on testing your origin repository on Travis CI and AppVeyor.
To do this, log into your personal account, synchronize the repositories with GitHub
and add pydnameth project.

Local

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pydnameth.git

	Create a virtual environment for your project and activate it:

$ conda create --name your-env-name python=x.x
$ activate your-env-name

where your-env-name is the name you want to call your environment,
and replace x.x with the Python version you wish to use (for example 3.7)

	Go to the root of pydnameth project and install project in ‘editable’
or ‘develop’ mode while you are working on it:

$ pip install --editable .

. refers to the current working directory.
This allows the project to be both installed and editable in project form.

	Install all libs in requirements_dev.txt:

$ pip install -r requirements_dev.txt

If with some package err-pkg error occurs, try:

$ conda install err-pkg --channel=conda-forge

If you want to save figures locally as .pdf and .png run the command:

$ conda install -c plotly plotly-orca psutil

And repeat command:

$ pip install -r requirements_dev.txt

	If requirements_dev.txt file was updated, you should repeat the command:

$ pip install -r requirements_dev.txt

	If you update requirements_dev.txt file, you should recreate environment for tox (only locally):

$ tox --recreate -e env

Where env is name for tox environment.

Git Pipeline

	master branch is always in production, tested and complete.

	development is the branch closest to master but has changes that should be merged to master.
Anyone who starts working on a new feature or bug fixing should always branch out from development.

	Branch out from development with new branch for bug or feature:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests:

$ tox

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7, 3.6 and 3.5. Check
https://travis-ci.org/AaronBlare/pydnameth/pull_requests
and make sure that the tests pass for all supported Python versions.

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ git add HISTORY.rst
$ git commit -m "Changelog for upcoming release x.x.x."
$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Kalyakulina Alena <kalyakulina.alena@gmail.com>

	Yusipov Igor <yusipov.igor@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.4 (2019-11-06)

	Project encapsulating.

0.1.0 (2019-01-24)

	First release on PyPI.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pydnameth	

 	
 	
 pydnameth.scripts.develop.betas.clock	

 	
 	
 pydnameth.scripts.develop.betas.plot	

 	
 	
 pydnameth.scripts.develop.betas.table	

 	
 	
 pydnameth.scripts.develop.observables.plot	

Index

 B
 | O
 | P

B

 	
 	betas_clock_special() (in module pydnameth.scripts.develop.betas.clock)

 	betas_plot_scatter() (in module pydnameth.scripts.develop.betas.plot)

 	
 	betas_table_aggregator_linreg() (in module pydnameth.scripts.develop.betas.table)

 	betas_table_linreg() (in module pydnameth.scripts.develop.betas.table)

O

 	
 	observables_plot_histogram() (in module pydnameth.scripts.develop.observables.plot)

P

 	
 	pydnameth.scripts.develop.betas.clock (module)

 	pydnameth.scripts.develop.betas.plot (module)

 	
 	pydnameth.scripts.develop.betas.table (module)

 	pydnameth.scripts.develop.observables.plot (module)

 _images/pydnameth.png
“chat on gitter

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pydnameth’s documentation!

 		
 pydnameth

 		
 Documentation

 		
 Features

 		
 Copyrights

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Import

 		
 Info

 		
 Config

 		
 Data

 		
 Annotations

 		
 Attributes

 		
 Released Experiments

 		
 Usage Examples

 		
 attributes_plot_observables_histogram

 		
 cpg_plot_methylation_scatter

 		
 cpg_proc_clock_linreg

 		
 cpg_proc_table_linreg

 		
 cpg_proc_table_variance_linreg

 		
 cpg_proc_table_polygon

 		
 cpg_proc_table_z_test_linreg

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Environment

 		
 GitHub Init

 		
 Local

 		
 Git Pipeline

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.4 (2019-11-06)

 		
 0.1.0 (2019-01-24)

_static/plus.png

